FunctionTime
- class nexus.FunctionTime(id)
Abstract class for
FunctionTime
. Do not use this class directly. AFunctionTime
implementation must be derived from this class in Python the following way.Added in version 1.0.4.
# definition of the derived class class FunctionTimeDefinedInPython(nx.FunctionTime): def __init__(self, id = "my function of time implementation", ...): super().__init__(id) ... # implementation of the actual function of time def FunctionTimeFunction(self, time): ... dependent_variable = f(time) return dependent_variable
- Parameters:
id (string) – User identifier.
- id
User identifier.
- Type:
string
- fit_variables
List of
nx.Var
objects.- Type:
list
- CreateDetuning(max_detuning, num_points)
Compute a detuning grid needed for energy based calculations. The detuning grid is created almost symmetrically in the range
\[-max\_detuning, -max\_detuning + step, ..., max\_detuning - step\]where \(step = 2 \frac{max\_detuning}{num\_points}\).
- Parameters:
float – maximum detuning in units of \(\Gamma\).
int – number of points, must be even.
- Returns:
The detuning grid in units of \(\Gamma\).
- Return type:
ndarray
- Function(time)
Call the function implementation from python.
- Parameters:
float – time in nanoseconds.
- Returns:
Dependent variable.
- Return type:
float
Examples can be found in the Tutorial section.